{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Batch Analysis" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In this notebook, we'll learn how to analyze EIS data in batch mode. Normally, you have a single set of EIS data, i.e., set of impedance measurements at various frequencies, plus a common circuit model that you want to fit to the data. This is what we call single circuit, single dataset or SCSD in short. However, there are two other modes of analysis that you might encounter in practice:\n", "\n", "- Single circuit, multiple datasets (SCMD): You have multiple datasets, each with its own impedance measurements, but you want to fit the same circuit model to all of them. A good example of this is when you have EIS data for multiple samples which you want to compare, or a single sample under different conditions, e.g., EIS data at different cycles during battery cycling.\n", "\n", "- Multiple circuits, single dataset (MCSD): You have a single dataset, but you want to fit different circuit models to it. This is useful when you want to compare different models to see which one fits the data best, which is by the way the classic use case of AutoEIS itself!" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "execution": { "iopub.execute_input": "2025-08-25T23:32:36.236094Z", "iopub.status.busy": "2025-08-25T23:32:36.235933Z", "iopub.status.idle": "2025-08-25T23:32:40.063507Z", "shell.execute_reply": "2025-08-25T23:32:40.062222Z" } }, "outputs": [], "source": [ "import random\n", "\n", "import autoeis as ae\n", "import matplotlib.pyplot as plt\n", "\n", "ae.visualization.set_plot_style()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Single circuit, multiple datsets (SCMD)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To test this, we can use a toy dataset that ships with the package. This dataset contains EIS data for a coin cell battery measured at discharged state at various cycles. Let's load the dataset and see what it looks like." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { "iopub.execute_input": "2025-08-25T23:32:40.070741Z", "iopub.status.busy": "2025-08-25T23:32:40.069831Z", "iopub.status.idle": "2025-08-25T23:32:40.082076Z", "shell.execute_reply": "2025-08-25T23:32:40.081173Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number of cycles: 130\n" ] } ], "source": [ "datasets = ae.io.load_battery_dataset()\n", "print(f\"Number of cycles: {len(datasets)}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To save time searching for the optimal circuit by calling the `generate_equivalent_circuits` function, we will use the circuit that we know fits the data well." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "execution": { "iopub.execute_input": "2025-08-25T23:32:40.085844Z", "iopub.status.busy": "2025-08-25T23:32:40.085494Z", "iopub.status.idle": "2025-08-25T23:32:40.090400Z", "shell.execute_reply": "2025-08-25T23:32:40.087887Z" } }, "outputs": [], "source": [ "circuit = \"R1-P2-[R3,P4]-[R5,P6]\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now, let's run Bayesian inference on the entire dataset using the given circuit. For convenience, the API for SCSD, SCMD, and MCSD is the same, so we just need to call `perform_bayesian_inference` with the appropriate arguments: the circuit string, list of frequencies, and list of impedance measurements. Since the loaded dataset is in the form of a list of tuples (frequency, impedance), we can easily extract the frequencies and impedances:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { "iopub.execute_input": "2025-08-25T23:32:40.095841Z", "iopub.status.busy": "2025-08-25T23:32:40.095666Z", "iopub.status.idle": "2025-08-25T23:32:40.098059Z", "shell.execute_reply": "2025-08-25T23:32:40.097478Z" } }, "outputs": [], "source": [ "freq, Z = zip(*datasets)\n", "# If you don't understand the above syntax, you can use the following code instead\n", "# freq, Z = [], []\n", "# for dataset in datasets:\n", "# freq.append(dataset[0])\n", "# Z.append(dataset[1])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "\n", "Note\n", "\n", "`perform_bayesian_inference` can handle all three modes of analysis: SCSD, MCSD, and SCMD. You only need to pass the appropriate arguments. The main three arguments are: `circuit`, `freq`, and `Z`. If any of these arguments is a list, then the function will automatically switch to the corresponding mode of analysis. Of course, you need to make sure the arguments are consistent, e.g., for SCMD, the length of `freq` and `Z` must be the same, etc.\n", "\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now, `freq` and `Z` are lists of frequencies and impedances, respectively, each associated with a different cycle. We can now call `perform_bayesian_inference` with these lists to get the posterior distributions for the circuit parameters for each cycle." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { "iopub.execute_input": "2025-08-25T23:32:40.100378Z", "iopub.status.busy": "2025-08-25T23:32:40.100198Z", "iopub.status.idle": "2025-08-25T23:44:07.857546Z", "shell.execute_reply": "2025-08-25T23:44:07.851599Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ " " ] }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "c08e47ea53ed4a668194a706bef6363b", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Refining Initial Guess: 0%| | 0/130 [00:00> Z\n", " >> circuit\n", " >> converged\n", " >> freq\n", " >> mcmc\n", " >> num_divergences\n", " >> print_summary\n", " >> samples\n", " >> variables\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeIAAAF0CAYAAAD/1jr9AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAPYQAAD2EBqD+naQAAMXBJREFUeJzt3QeUFFW+x/H/sAMMMCQlZ0GBQYLIikqQHAQWUQyLZESEFXwEcQVUQJFgAlbBxUdyQdAjoICKIggCi7JK0GUZkOiQcSTOwAyg9c7/7ul+3T0BZmjmVnd/P+c0TFd1Vd3b1V2/rlu3qqIcx3EEAABYkcvOYgEAgCKIAQCwiCAGAMAighgAAIsIYgAALCKIAQCwiCAGAMAighgAAIsIYgAALCKIEbamTJkiS5YsCcq8evXqJeXKlQvKvLKyzKZNm3qfR0VFyXPPPXfV08+dO1dmz559xdfpMho1amT+PnDggFnO2rVr5Vpt27ZNxowZIydPnsx2Ha63M2fOyJ/+9CcpVKiQjB07Nt3X6Huh5Q583HDDDdK2bVv597//neH8N27cKH/4wx9k5syZ17EWCHXRtgsAXM8g1oB54IEHrnlew4YNM8Fo04oVK6RKlSpZCuLLly9Lnz59Mn3dK6+8ItfjSrcaxBpu3bp1M6GVnTpcb1988YV88sknMmrUKOnatWumrx06dKi0atXK/P3777/LwYMH5cUXXzQ/ZOLj46VEiRJ+rz9//rz07NnTvBbIDEEMZOLixYuSJ08eqVWrVtDmlV269xVMnvLUr19fckqw63CtNCyV/li4+eabM32tfgYCy1+1alVp3ry5zJs3z/xY8/XMM8/IpUuXrkOpEW5omkaO0ia9cePGyQsvvCClS5eWAgUKSOfOneXIkSN+r1u5cqU0aNBA8ufPb/amHnnkEdm/f7/fayZPnizVqlWTmJgYKVu2rPzP//yPpKSkeJfz888/y3vvvWf+9tCm14cffliKFi1qmiM7duwoO3bsSNMMqXtJbdq0kYIFC6bbNK17kFOnTpXq1atL3rx5pXz58vL00097N+yeaW677TbTPK57gU888USG78v3338vjRs3lnz58pn3RZtvA/dSA5t158+fL3Xq1DHvUfHixc3yPM3AlSpVkq+//lr++c9/mum03rqHrH9v2LBB7r77bqlRo0aapmmPhIQEuf/++836ufHGG81e9enTp73jdf4aXr4889+zZ49pku7du7cZfsstt5jn6dXh2LFjptxafl2Pf/zjH2Xx4sVp6v3666/L6NGjzTrQ12n5t2/fLpnRENTP2U033WR+cOg6ePnll00rgWf9eMoYFxfnLWNW3HHHHeb/ffv2+Q1fvXq1zJo1S95+++0003g+Y19++aX06NFDihQpYj5n+hnXpnJEIL37EpBT9CN3ww03OK1bt3Y+/PBD56233nKKFy/uxMXFORcuXDCvWbZsmZMrVy7n3nvvdebPn+/Mnj3bqVmzpnldQkKCec306dOd6Oho5+WXX3Y++ugjZ9y4cU6BAgWcfv36mfErVqxwSpQo4TRv3tz8rY4cOeKUKlXKqV27tjN37lwz7zvvvNMpXLiw89NPP5nXrFmzxlvGgQMHOkuWLDHDe/bs6ZQtW9Zbj6efftq8btCgQc6iRYuc1157zSlatKjTqFEj5/Lly95pChUq5JQpU8bUc9u2bem+J4cOHTKvq169uvO///u/pmxa33z58jlNmjTxe+9GjRpl/v7000/Ncy3Hxx9/7EyePNm8P/q+qrVr1zq1atVybr31VlP/8+fPO3PmzDHTlCxZ0nnuueeclStXmtfqMho2bGj+3r9/v3lNTEyM0717d+eDDz5wxowZ4+TJk8dp0KCB8/vvv5vXVaxY0enatatfPTzz3717t3kMHTrUPNf1p88D63D69GmnSpUqTunSpZ2pU6c6ixcvdnr16mVe8/e//92v3jfeeKPTuHFjZ8GCBea9zJ8/v3Pbbbdl+ll76KGHnNy5c5u66nrUemi9/vznP5vxP/74Y7plDOT5TGj9AsXHx5tx48eP9w7TepUvX96ZNGmS9/3U9Ro4P63TY489Zj4/w4YNM8MGDx6caZ0Qnghi5Cjd2Nx0003OxYsXvcM0KHT4P/7xD/NcN87169f3Bpo6fvy4CSYNR9WxY0cTXL5mzJhhNmwegWGhIa3hrBtKj7Nnz5oNYt++ff02kk888YTfvH2D+MCBA+aHgm48fS1fvtxMqxtWzzT6/Jtvvsn0PdEw1x8DiYmJ3mG//vqrGZZRED/11FPmh4fve6Q/SO6//37vMN+A9Q3KCRMm+C0/vSDWsvvSHxo6XN+f9N5b3/l7Ai3weWAdXnrpJScqKsoEoq/OnTubHzWXLl3yTlOtWjUnNTXV+5oRI0aY4WfOnEn3PV2/fr0Z/+abb/oN1+c6/Pvvv8+wjIE8nwn9cXDu3Dnz0OV+99135odX3rx5nX379nlfr++d/sDT9ZBZEOuPDl933323U7du3QzLgfBF0zRyXPv27SV37tze59oBRptXN23aJHv37jUP7eSivU09tCOMNp9qU6vSZtydO3ea5tMPPvjANHH269cv096pn332mTmep/NNSkoyD20i1KZZz3w97r333gzns2rVKtMBJ7ATVLt27Uyzqe+8tAn8rrvuumKHIX1PtAnYQ5vjW7RokeE0+l4kJydLy5Yt5d133zVNz506dTLN4L7vW3oyq5uHNpOm93zz5s0SLFpvbYoOPP6unetOnTrld8hAj836Hl/X5mbl21weOG9dt56mZ995q8D1fTX69+9vmpD1UbhwYdMsrR3SZsyY4S3PsmXLzOdRm+mvtB7uu+8+v+c6j4zqg/BGECPHlSlTxu+5brD0eK0eX9VAVRUrVkwznb5Gw1Pp8VgNIH2ux/r0uGrdunXNsd2M6Lzff/9978bU89BjkomJiX6v1WOjmc0nvTLmypXLTOcpo9IfGFeix7ID3xOlx00z8tBDD8ny5ctN+QcNGmQ24nq8fM6cOVdcXmZ18yhVqlS6ZUlNTc1wmqz2Dtb3MaP1rHzfx9jYWL/XeI77Z7RMnbf+sAmsa3rzvlojR46U9evXex96XP/48ePmR6PSENUfg88++6w5lq3L8PQZ0PctcJnp1Yke1pGJXtPIcWfPnk3TqeaXX34xe72eDeWJEyfSTKd7fZ7A0g433bt3N51dtPevnq+pnXl0j+fw4cPphph2itG9X+3UFSg6+uq/Cr5l9OwJqXPnzpnOUumFamY0TD3h7iuwA5uv3377zeyBd+jQwfyte6qTJk0ye+n6g0Q7iV2LwPdf31NPJy3l2wHOw/d84at9HzNazyqr72PgvHWvWj9bvq0v1zJv7XQW2KnNl85bg1k7fQV2/Bo4cKB5aJmAQOwRI8dpE7HvL39tytMw0Y2c9l7VPRndc/W1e/du2bJli+nJ7NmQDhkyxPytTZYasE8++aTZ8B49ejTd5TZp0sT06G3YsKFZlj60Z/a0adPS9NTNjDaLq8Ayaj30kKanjFdLy6578r49ZjWYtQk8I9pr2NPMqi0KegrSX//6V2+P52u1aNEiv+cLFy40geapu+7NBf6g0l7aWaHz+uabb0yLgC99X/W0IE/oZ4fOWz9TgfXQeev7pU36waZB7bvHrI8PP/zQjNN1o889vfABX+wRI8ft2rXLhIju0WowvvTSS+Z4m+7hafOuXiRBQ1WbX/XUJj0lSff2KlSoYIYrHaenhugxWQ0h3bOaOHGiOSXHc1qO7hXpMTw9bqenKeleih6v1WNzXbp0MXvV2pSre9NZCRHd29TlP//886Y5Uuepp69oufWYtYZkVmi59MeJ/lDQvSbdO9f6+h4zDqTL1437gAEDzLFk3RvXC5iULFnSu9em9f/Xv/4lH330UZbP39UA0VOpmjVrJlu3bpUJEyaYY6R6mpYn6PQ46NKlS82606Bes2ZNui0HCxYsMO+3BpUvPbyg59/qMoYPH26aw/UYt66Pa70iml4tS9dD3759TZ+DmjVrms/Cq6++Kk899dR1uUqaNoMH7jF79sD1HOXM9qYR4Wz3FkNk0Y+c9jbWXslFihRxihUr5vTu3dv55Zdf/F6nvVlr1KhhTj/RXs1dunRxfv75Z+/4pKQkZ8CAAebUFz2NSXs0ay9ez+lNaubMmabnccGCBb3DtmzZ4rRs2dL0wNbhzZo1czZs2JCmR+uXX37pV57A05dSUlKcv/71r2aYllF7ET/zzDPmNKGMpsnMpk2bTK9ZPU2oUqVKzhtvvGHmn1Gvae1RPHLkSLNcrb+ekqQ9ybdv3+59/WeffWZOadK66ilSGfUQTq/X9NKlS73vk57ypXXz7el+8uRJc3pQbGysWY8PPvigM2vWLL/5a89i7T2s78+rr76apg5qx44dTvv27c18dFnaW15Px/IVOI3SXsg6XMubEe0dr58zfQ+0DLfccovpMf7bb795X5OVXtPpnb50JZn1mg78jOnnV9cnIk+U/mP7xwAihx5b1MsJ6kU9AAAcIwYAwCqCGAAAi+ishRzFkRAA8MceMQAAFhHEAABYRBADAGBRyBwj1isx6SX/9Mo06V1eDwAA231g9OI6euU/vThR2AWxhrDnqj4AALjVwYMHs3T1tiwFsV5GUC/Bp7cY0+u46qX19BZggXdqSY9eZlAvY3fo0CFzSUC9XZ3vBfOvxHONVq2g59J5bvoVdOHCBXNJwHDZW6dO7hdu9VHUKTRQp/Tp9dd1hzGr1xTP0pW1Wrdube4eMnXqVHNxfb3ury50xYoV5u9Zs2aluYau3hJM7xur1+d95ZVXzAXu9Xqvet3XH3744ap337WCeg9QvTA+QXz9USf3C7f6KOoUGqhTcHMqOitNw19++aW5iLxe5F1NnjzZhLPu5cbHx8trr73md1cTz63opk+fbm7+rhdbV3qxfr3xud55Re+EAwBApLrqINZby5UtW1Zq167tHaZ3elF6D069TZ02VVevXj3NtHr7r969e3uf6y3U9J6percWghgAEMmuOojr1atn9nx9zZ492+zG671DdY9Zb2ent5PT9vF+/frJ4MGDTdOz3gqsYsWKftNqr7L0bgrukZqaah4ennufavOB267O5CmP28p1LaiT+4VbfRR1Cg3UKX3ZnTZbvaaTk5Nl2LBhpqOWHvfVoNXTizRs9QbnmzdvlqFDh5oOXdpBKykpyQS2L90r1uEZ0fufjh07Ns1wbcPXG5S7kd43N9xQJ/cLt/oo6hQaqFPafMqRIN6wYYP06NHDNEfrsV69WbgWXPeWtelaabPzyZMnZdq0aSaI9aB1YAF1mhIlSmS4nBEjRpgwD+yNpoEeGOq26a8grY/epD6cOi5QJ3cLt/oo6hQaqFP6tBPzdQ/iRYsWyaOPPmqO665atUoqV65shmvBPSHsUbNmTRPWqnTp0nL48GG/8fq8UaNGGS4rb9685hFI3yC3rng3ly27qJP7hVt9FHUKDdTJX3anu+pLf2h37Mcff1weeeQRWb16tTeEPc3Ibdq08Xu9Nk/HxcWZv7UTl3bM8jh9+rRs3brVr4c1AACR6Kr3iPXUJT02PGTIENm3b5/fOA3a0aNHy3PPPScPPPCA/Pjjj+bYsZ62pPr06SP169c3Tdm33367PP/889KgQQO59dZbg18jAADCMYj3799v2r+193R647TZWgNWzyXWpmi9mEf37t3N+Dp16si8efPMcd9jx45J8+bNTY9rAAAiXZaurGUTV9bKWdTJ/cKtPoo6hQbqFNyc4jaIAABYFDJ3XwIQfAkJCZKYmChuPIVEL5FboUIF20UCrjuCGIjgEI6rVk3Ou/SiDPljYiR+1y7CGGGPIAYilO4JawiPrxsnlWMLiJvsS0qWkVvjTRkJYoQ7ghiIcBrCcUWydv9UAMFDZy0AACwiiAEAsIggBgDAIoIYAACLCGIAACwiiAEAsIggBgDAIoIYAACLCGIAACwiiAEAsIggBgDAIoIYAACLCGIAACwiiAEAsIggBgDAIoIYAACLCGIAACwiiAEAsIggBgDAIoIYAACLCGIAACwiiAEAsIggBgDAIoIYAACLCGIAACwiiAEAsCja5sKBSJCQkCCJiYlBn6/jOJKSkiIxMTESFRWV5enj4+ODXiYAWUcQA9c5hOOqVZPzKSm2iwLApQhi4DrSPWEN4fF146RybAFxk/UnEmXargO2iwFEPIIYyAEawnFFCoqb7E9Ktl0EAHTWAgDALoIYAACLCGIAACwiiAEAsIggBgDAIoIYAACLCGIAACwiiAEAsIggBgDAIoIYAACLCGIAACwiiAEAsIggBgAglIL4xIkT8vDDD0vhwoUlNjZW7rvvPjl27JgZt3PnTrnnnnskf/78UqtWLVm5cqXftDNnzpQKFSqY6Tp37nxdbpYOAEBYB3G3bt1k//79smLFCvn0009l79690rt3b7l06ZJ06NBBqlSpIt9++6306dNH7r//fjlw4L/3O/3qq6/kqaeekgkTJsi6deskKSlJevTocT3qBABAeN6P+MiRI/Lll1/Kv/71L7njjjvMsMmTJ0vr1q1l4cKFcvr0aZkxY4bkyZNHateuLR9++KG89957MmrUKJkyZYo89thj0rVrVzPdm2++KdWrV5dDhw5JuXLlrk/tAAAIpz3io0ePStmyZU3IepQsWdL8P2fOHNMsrSHs0bhxY1mzZo04jiMbNmyQVq1aecdVrVpVihcvLmvXrg1OTQAACPcgrlevntmDzZs3r3fY7NmzJV++fFKkSBGpWLGi3+vLlCljjimfPXtWTp06leF4AAAiVZaapn0lJyfLsGHDTFP0K6+8YjpmaSD70k5ZeixYHyqj8elJTU01Dw8Nc6V71/pwE0953Faua0GdgrtMZI8bv+9ZxXcpcurkZHPabAWxNjNrR6vjx4/L22+/Lf379zcdtC5cuOD3upSUFClatKgUKlTIPM9ofHq0U9fYsWPTDNd55M6dW9xI6xNuqFPoLCsc6fsXuN0IVeH4WaBO/rL7Wc1yEC9atEgeffRRadiwoaxatUoqV65shpcuXVoOHz7s91p9rqcrFSxYUAoUKGCe16lTJ8349IwYMUKGDh3qt0dcvnx5s1cduGdtm/4K0pUXExMjUVFREg6oU3DosnBt75/bvu9ZxXcpcup06dKl6x/EZ86ckccff1weeeQReffddyVXrv8/xNyiRQt58skn5fLlyxIdHe09Zal79+7e8dpxq127dt5zjvX4cNOmTdNdlh6H9j0W7aFvkFtXvJvLll3U6dqXhewLp89fONXFgzr5y+50WQpiPXVJjw0PGTJE9u3b5zdOe0RrAGsYa1P1/PnzZc+ePWbvWfXr189cCERPe9K9Zz2nuGfPnubCIAAARKosBbFeyEN3vbX3dHrjPvnkE7PH3KBBA6lRo4Z89tln3mPA7du3l4kTJ8rgwYNNB61OnTqZc4kBAIhkWQri4cOHm0dmNm3alOG4QYMGmQcAAPgvbvoAAIBFBDEAABYRxAAAWEQQAwBgEUEMAIBFBDEAAKF40wfAbRISEiQxMdFVl+WLj4/PkeUACF0EMcImhOOqVZPzYXgRegDhjSBGWNA9YQ3h8XXjpHJsAXGL9ScSZdquA7aLAcDFCGKEFQ3huCIFxS32JyXbLgIAl6OzFgAAFhHEAABYRBADAGARQQwAgEUEMQAAFhHEAABYRBADAGARQQwAgEUEMQAAFhHEAABYRBADAGARQQwAgEUEMQAAFhHEAABYRBADAGARQQwAgEUEMQAAFhHEAABYRBADAGARQQwAgEUEMQAAFhHEAABYRBADAGARQQwAgEUEMQAAFhHEAABYRBADAGARQQwAgEUEMQAAFhHEAABYRBADAGARQQwAgEUEMQAAFhHEAABYRBADAGARQQwAgEUEMQAAFhHEAABYRBADABBqQbx582YpV65clqaZOXOmVKhQQWJjY6Vz586SmJiYnUUDABDZQZyQkCDPPvtsmuEdOnSQmJgYv8fChQvNuK+++kqeeuopmTBhgqxbt06SkpKkR48ewakBAAAhLDorL+7bt6/MmjXL/F22bFm/cTt27DDBGxcX5x1WpkwZ8/+UKVPksccek65du5rnb775plSvXl0OHTqU5T1rAAAido/4+eefl61bt8rYsWP9hl+8eFEOHjworVu3NgHreRQqVEgcx5ENGzZIq1atvK+vWrWqFC9eXNauXRu8mgAAEO57xBUrVjSPbdu2+Q3ft2+fFChQQLp16yYbN26UkiVLyvDhw6V79+5y9uxZOXXqlJnOl+4tnzhxIsNlpaammoeHzkdpsOvDTTzlcVu5IqlOoVJOZI0bv+/h/l26GtQpfdmdNktBnJHdu3dLcnKyNG7cWF544QVZvXq19OnTxxwnbtCggXlNvnz5/KbRTlt6rDgjejw5cM9bXbhwQXLnzi1ulJKSIuEmVOoUKuVE1terfufDQTh+RqmTv+x+VoMSxM2aNTPHe3VPWNWtW9fsJU+bNk3atm2bbgG1skWLFs1wniNGjJChQ4f67RGXL1/eBHpgqNumv4K0PvrDIyoqSsJBqNVJy4nwo+vVbd/3cP8uXQ3qlL5Lly6JtSDWvVt9+KpZs6asWbNGChYsaJqtDx8+LHXq1PGO1+d6OlNG8ubNax6B9A1y64p3c9nCvU6hUEaE7+cv0uriQZ38ZXe6oFzQY8CAAaZHdeC5xp4e1C1atDCh7LFz505zfLhp06bBWDwAACErKHvE9957rzz44INy6623mnDV3tDz5s0zx4pVv3795OGHH5Y77rhDSpcubc4p7tmzpxQuXDgYiwcAILKDuGPHjvL222/LpEmTzMU+KleuLLNnzzadt1T79u1l4sSJMnjwYNNBq1OnTuZcYgAAIl22grhXr17m4Usv2KGPjAwaNMg8AADA/+OmDwAAWEQQAwBgEUEMAIBFBDEAABYRxAAAWEQQAwBgEUEMAIBFBDEAABYRxAAAWEQQAwBgEUEMAIBFBDEAABYRxAAAWEQQAwBgEUEMAIBFBDEAABYRxAAAWEQQAwBgUbTNhQNAZuLj48WNihUrJhUqVLBdDIQJghiA6ySmpJrmum7duokb5Y+JkfhduwhjBAVBDMB1zl2+LL+LyPi6cVI5toC4yb6kZBm5NV4SExMJYgQFQQzAtTSE44oUtF0M4LqisxYAABYRxAAAWEQQAwBgEUEMAIBFBDEAABYRxAAAWEQQAwBgEUEMAIBFBDEAABYRxAAAWEQQAwBgEUEMAIBFBDEAABYRxAAAWEQQAwBgEUEMAIBFBDEAABYRxAAAWEQQAwBgEUEMAIBFBDEAABYRxAAAWEQQAwBgEUEMAIBFBDEAABYRxAAAhGIQb968WcqVK+c3bOPGjXL77bdL/vz55c477zSv8TVu3DgpWbKkFClSRB5//HG5cOFC9ksOAECkBnFCQoI8++yzfsNOnjwpHTp0kLZt28qmTZukSZMm0r59ezl79qwZP2fOHJkyZYrMmjVLPv/8cxPSw4YNC04tAACIlCDu27evVKxYUVatWuU3fO7cuWYPefz48VKrVi2ZOHGiREdHy/Lly834yZMny4gRI0xY33XXXWb8vHnzJDU1NXi1AQAgxERndYLnn39eBg4cKMuWLZN33nnHO3z9+vXSsmVL7/NcuXJJw4YNZc2aNdKuXTvZvn27tGrVyjtex50/f16+++47adSoUTDqghygrSGJiYniNvHx8baLAAA5E8S6N6yPbdu2+Q0/cOCANG3a1G9YmTJlZO/evWbj7TiOmc6jQIECUqhQITlx4kT2So4cp+sxrlo1OZ+SYrsoABC5QZyRpKQkyZcvn9+w2NhYM1wfKqPx6dEma99ma8+xZg10fbiJpzxuK1ew6/TLL7+YEB5fN04qxxYQN1l/IlGm7TpguxiIIFe7LYqU7UOoc4JQp+xOG7Qg1r3bwF7QKSkpUrRoUTNO6fg8efKkGZ+eCRMmyNixY9MM13nkzp1b3EjrE2586+T5W0M4rkhBcZP9Scm2i4AIo9+HrJz5Ee7bh3CRcg11yu6ZQEEL4tKlS8vhw4f9hunzChUqmHGe54ULF/ZW9tdffzXj06Mdu4YOHeq3R1y+fHmzVx24Z22b/grS+sTExEhUVJSEg/TqpH8DEO/34Wq2RZGyfQh1ThDqdOnSJbtB3KJFC1mwYIH3+eXLl2XdunUyY8YMKVasmNSuXdt03KpRo4YZv3btWu/w9OTNm9c8Aukb5NYV7+ayBaNO4VY3ICe/7+G+fQgXUddQp+xOF7Qra3Xp0kV27dolY8aMMecI9+rVyxwDbtOmjRnfr18/efHFF+WLL76QlStXyhNPPCGDBg0Ku5UIAICVPeJSpUrJ0qVLTbhOmjRJ6tevb84h1nOJ1YABA+To0aPy6KOPmiYADeqRI0cGa/EAAERWEGuQ6sNXs2bNzPnC6dHzivUSl/oAAAD/xU0fAACwiCAGAMAighgAAIsIYgAALCKIAQCwiCAGAMAighgAAIsIYgAALCKIAQCwiCAGAMAighgAAIsIYgAALCKIAQCwiCAGAMAighgAAIsIYgAALCKIAQCwiCAGAMAighgAAIsIYgAALCKIAQCwiCAGAMAighgAAIsIYgAALCKIAQCwiCAGAMAighgAAIsIYgAALCKIAQCwiCAGAMAighgAAIsIYgAALCKIAQCwiCAGAMAighgAAIsIYgAALCKIAQCwiCAGAMAighgAAIsIYgAALCKIAQCwiCAGAMAighgAAIsIYgAALCKIAQCwiCAGAMAighgAAIsIYgAALIrOqQVt3LhRBg4cKDt37pRatWrJ9OnTpV69ejm1eAAIqvj4+Kt6neM4kpKSIjExMRIVFXVdy1SsWDGpUKHCdV0GXB7Er7zyirzwwgt+w3r37i0vv/yydOjQQfr37y/vvvuuzJs3T9q3by8//fSTFCpUKJhFAIDrKjEl1TQlduvWTdwmf0yMxO/aRRhHchDr3u6QIUOkZ8+e3mFFihSRuXPnSrly5WT8+PFm2MSJE2XBggWyfPly6dq1azCLAADX1bnLl+V3ERlfN04qxxYQt9iXlCwjt8ZLYmIiQRzJQbx792556KGHpHr16n7D169fLy1btvQ+z5UrlzRs2FDWrFlDEAMISRrCcUUK2i4GwkCuYAfxzJkzpVKlSlK5cmUZNWqUXLx4UQ4cOCAVK1b0e22ZMmXkxIkTwVw8AACRu0d87tw5OX78uGmKXrx4sezZs0cGDx4sp0+flqSkJMmXL5/f62NjY83wjKSmppqHx9mzZ70dH/ThJp7yuK1cwa5TONUPCFc5sY2MlG1eVmV32qAFsQat756v9ojWHoLaoUF7SV+4cMHv9dqLsGjRohnOb8KECTJ27Ng0w3U+uXPnFjfSOoUb3zqFY/2AcKPf08Dt7fVcVrhJuYY6Zfd9D1oQR0dHp2l+rlmzply6dElKlCghhw8f9hunzzPrUDBixAgZOnSo3x5x+fLlTeAH7l3blpOnJ9isk/4NwN30e3q9t5GRss3LKs07q0E8f/58sxe7fft2byU2b95s9npbt25tekl7XL58WdatWyczZszIcH558+Y1j0A6b7eueDeXLRh1Cre6AeEoJ7dD4b7Ny6rsThe0zlpNmzaVQ4cOyRNPPCHfffedLFmyRIYPH25OZ+rSpYvs2rVLxowZY8K5V69e5hhxmzZtgrV4AABCUtCCWM8T/uyzz8we8T333CODBg0ygTty5EgpVaqULF26VBYtWiSNGjWSgwcPmnOItTkbAIBIFtQk1HOD9VKW6WnWrJkJaQAA8P+46QMAABYRxAAAWEQQAwBgEb2lXCghIcFcuN1t59Rd7W3fAABXjyB2YQjHVasm58PwijUAgLQIYpfRPWENYbfdYk2tP5Eo03YdsF0MAAgrBLFLufEWa/uTkm0XAQDCDp21AACwiCAGAMAighgAAIsIYgAALCKIAQCwiCAGAMAighgAAIsIYgAALCKIAQCwiCAGAMAighgAAIsIYgAALCKIAQCwiCAGAMAighgAAIsIYgAALCKIAQCwiCAGAMAighgAAIsIYgAALCKIAQCwiCAGAMAighgAAIsIYgAALCKIAQCwiCAGAMAighgAAIsIYgAALCKIAQCwKFoiVEJCgiQmJgZlXo7jSEpKisTExEhUVNQ1zSs+Pj4oZQIAhIboSA3huGrV5HxKiu2iAAAiXEQGse4JawiPrxsnlWMLiJusP5Eo03YdsF0MAEAOicgg9tAQjitSUNxkf1Ky7SIAAHIQnbUAALCIIAYAwCKCGAAAiwhiAAAsIogBALCIIAYAwKKIPn0JAMJNTlydLztXEyxWrJhUqFDhupctFBHEABAGElNSTRNnt27dxI3yx8RI/K5dhHE6CGIACAPnLl+W30VcecXAfUnJMnJrvKxfv17i4uLEbYoVKybly5ePjCA+evSo9O3bV77++mspVaqUjB07Vrp27ZqTRQCAsObGKwaGwt76jp07pXjx4uEfxH/+85+lQIEC5lfR9u3bTShXqVJF7rrrrpwsBgAgB4XC3npiYmL4B/GWLVtk48aNcujQISlZsqTUrVtXVqxYIbNmzSKIASACuHFvPaJOX9K94Fq1apkQ9mjcuLGsWbMmp4oAAIDr5Nge8YEDB6RixYp+w8qUKSMnTpxI9/Wpqanm4XHmzBnv/9p1/lqcO3fO/L/jzFk5f/k3cZN95/579yXKFh5lc2u5FGULr7K5tVxuL9uB5GRvLpw9e1YuXrx41adkBdLpVZYzyskhffv2dbp06eI3bNWqVU6uXLnSff3o0aO1Jjx48ODBg4cTSo+DBw9mKR9zbI+4UKFC5mC4Lz0hvEiRIum+fsSIETJ06FDv899//11OnjwpN954Y7Z/rVwv+itIu74fPHjQ1DMcUCf3C7f6KOoUGqhT+nRPWPestbU3K3IsiEuXLm2OE/s6fPhwhid3582b1zx8ZRTabqErL1w+lB7Uyf3CrT6KOoUG6pRW4cKFxbWdtVq0aCE//PCD2av1+Oqrr6Rly5Y5VQQAAFwnx/aI9XSlOnXqSO/evWXMmDGycuVK+fjjj835xAAARKocvfvS4sWLJTk5WRo0aCBz5syRJUuWyM033yyhTpvQR48enaYpPZRRJ/cLt/oo6hQaqFNwRWmPrSDPEwAAXCXuRwwAgEUEMQAAFhHEAABYFLFBrLdkbN++vcTGxpoOY++99941z1PnoRcbuXz5soRLndKzc+dOueeeeyR//vzm+uHaA97XzJkzzfnhWo7OnTunuZCLG+u0d+9eadOmjVlO0aJFpWfPnpKUlHRdlpVTdbqSZcuWSbVq1cwd0fT0wv3794d0fYIpmHV67bXXzIUi9HPVsWNHOX78uHec3gjn9ttvN9+lO++8UzZv3uw37bhx48z1+fUaCo8//rhcuHDB9XX6/vvvpWHDhqZOJUqUkCFDhly3beLRHKrTlVzzNs+JUPfcc49z7733Olu2bHH+8Y9/ODExMc4333yT5nVHjhxx8ubN6/coUKBAmtedOHHCufHGG83lzS5duuS9rGfgtJ7HgQMHzGtq1qyZZtw///lPq3V6//3304zX+aqLFy86VapUcXr16uX88MMPzhtvvOHkz5/f2b9/vxm/evVqJ1++fM78+fOdzZs3O61bt/ZO69Y6/fbbb061atWctm3bOt99953zySefOGXLlnX69+/vnb59+/Zppl+wYIFr66T+8pe/pBk/YcIEMy4+Pt48nzp1qlmP3bp1M59FfS/cWJ9Q/S7NmjXLKV68uLN06VJn48aNTr169Zz77rvPjPv111+dokWLOiNGjHB+/PFHZ/jw4U7JkiWdM2fOmPGzZ88225Tly5ebZdetW9cZMGBAtuqTU3U6ffq0U6xYMadHjx7Otm3bnIULFzqFChVyJk6c6J0+1NbTlb7/wdjmRWQQ65sVHR3tHDt2zDtMr4OtX/ZAX3/9tdlI64bL89i5c2ea1z3yyCPmQ+EbxLryfafTh35AdSXpBu/y5ctO7ty5nU2bNvm95vz581brNHbsWKd79+5+4xMSEsy4xYsXm41Damqq9/V33323M27cOPP3n/70J2fgwIHecbt27XKioqKyfO3VnKyTfvH0mue+y3nnnXfMl03XkbrpppucJUuW+E3v2WC6sU6qWbNmzptvvuk3PjEx0YwbNGiQ06FDB+9rz507Zz6LGzZscGV9QvW7dPPNN5uNvIcGTunSpU15X3/9dadWrVrecVoP/QGoG3Sl41577TXv+C+++MKJjY11UlJSXFsnDaciRYr4bR9GjhxpfryrUFxPV/r+B2ObF5FBPGXKFPPr0tf06dO9HxZfM2fOdB5++OFM57ds2TKzkj///HO/IA6kG7kSJUo4x48fN8/37NljnrutTrp3pNOmZ/Dgwc7999/vN+yZZ55xWrRo4fz+++/mF77+qvSldZw3b55r6/TRRx+lWY7WQdelBpduVPQLn5SU5FyrnKqTKleunLNjx450x912221mb9hX/fr1nZdeeslxa31C7bv0888/m8+Q7iWmp1OnTs6QIUP8hum8HnvsMefkyZNmY66tFR76+dMfjOvXr3dtnfSHnwaTL/2c6Q+IUF1PqZl8/4O1zYvIY8RZuSXj7t275dChQ1KvXj1zvKNDhw5mmIfelvEvf/mLvPPOO5meCP7bb7/JgAED5NlnnzXz8cxbj6O0atVKihcvLvXr15cvvvjCep30708//VSqVq0q5cqVM+X23N4rs+Xoa06dOpWl2126oU6dOnWSLVu2eF+rP1D1gjNly5Y1NxnZt2+fOY7arVs3c7yudu3aMm/evCzXJyfrpMcSjxw5Ii+99JKpR/Xq1eWNN94wN0/JajncUJ9Q/C7t2LHDXHfYc+Ei/ex07drVe+wxs+UkJCSYz6HveP0M6jWQbX6XrlSngQMHmr4HHnpLwfnz55urKobqetqXyfc/WNu8iAxi7YSTL18+v2F6kF2v+hVIV9Yvv/wiEyZMMJfkVE2bNpXTp0+bv4cPHy7t2rUznZcyM3fuXG9oB85bV/rnn39uOsxox4Nvv/3Wap10vHY60w/bjBkzZM2aNdKlS5dMl6PDPZ2bMhrv1jr50k4WDzzwgCxdulRef/1177S6zMaNG5v11KNHD+nTp498+OGHrq3Tnj17TOjqBuKTTz6Rp59+2lxa1lOnzNajG+sTit8lfZw/f17+9re/yd///nd5//33ZdeuXfLQQw+ZkA3F79KV6hQYlM2bNzf3GJg4cWLIrqfdmXz/g7aenAg0dOhQ0yzkSzvo3HDDDWlee/ToUb8mCT2WocdI58yZ46xdu9YpU6aMc+rUKTNuzZo16TZN67EfbS6ZNm2a33CdznPMzkOPefXs2dNanZR2vPIcG1F6PEfrpcMfeOAB0zzt66233nJuv/125+zZs+Z12knD1x//+Efnb3/7m2vr5NtErR02dDr92/f4qe9xKKWdZpo0aeLaOl24cME5dOiQ3/wmTZrkVKxY0fyty/v444/9xj/44IOmfG6sTyh+l9577z1T/q1bt/od19Rh+/btM98ZbV719fTTT5vvmHbeSq+5VDtC6aEwt9bJY8aMGaY5Wj9vvk3pobiezmXy/Q/WNi8i94j1lox6C8aruSVjqVKlTLOEh/7yqVy5smm20F/sx44dM6+JiYmR1q1be38NvfXWW95p9PQebSbUpg1fekqCNn36qlmzZpa6zQe7TqpSpUryhz/8wa9MSsdntpyCBQua+V5tOdxSJzV16lSzJ9ykSRPTVKXN1R66PrVJKpTWk34etUk6ozJnpRxuqE8ofpeKFStmhukpYh41atQw/+t2I7Pl6DjPc9/7t//6669Wv0tXqpPS+8j3799funfvLv/+97+lUaNGIb2eYjP5/gdrmxeRQXy1t2TUD76u7NWrV3uHaXPDTz/9JHFxceZ4yH/+8x/Ztm2beei5ZErPBdSmF4+FCxdK27Zt09zjUo9TvPjii37DdFqdt606rVu3zozXm1v7lkk3kLfccotZzoYNG/zOC/Rdjo7XHyi+5xzrsRJtBnJrnbTpSQ8xjBgxwjQ3eY47eujxyL59+4bUetImOD0vOqMyB64nbZ7bunVrlm9LmlP1CcXvkh6PjI6ONvPy0LvN5cqVy/td8l0H+p3S90GXo+GgxyJ9x69du9Y73K110jJOnjzZHFqYPn26CapQX08DrvD9D8o2z4lQd9xxh9OxY0dz/pme46anquzevds0Wej/nuZlbSaqXr26s2LFCufbb781PQKrVq2abs/ojJqmtblTexMG0qaLggULmvMFtRzazT9PnjymZ6GtOmnzTfny5c05dHpaj54yoeP69OljptUmTx3fr18/sxxtHtImHu3l6Wka0vOKP/jgA2fdunWmd65nWrfW6dVXXzVNfnragc7T96G0R6SecqHnTGs59H99rvVza520aU3LOGrUKPO3NsFpU6Gea6m0KU0/a9rLVOfdqlUrp3nz5q6tTyh+l5SWv0aNGs6qVatME62en6rn4HuaS7XMo0ePdr7//nuna9eu5uwLz7R6yEd73+rZGPp+VKhQwXnxxRezVZ+cqtOTTz7p1K5dO833yHOudyiup6VX+P4HY5sXsUGs5yfqKTd6Arh++D/99FO/MPUcl9JjGvqmatjoCeB6PMOzgb6aIN67d68Zpse70uv6Pn78ePMF0w+QdsXXL53tOv3nP/8xG2YdpwGloet7fEVPqdBTXXQ5epwrsG76ZdNz8PQLp+eFJicnu7pOeuELnVd6D9/TH2655Raz0dAvdHZOx8rJOnk2ILpR1M9WpUqV/M5JVbrhqFy5stmI6DnFelEaN9cnFL9Les6vhlPhwoXNhS30WKgec/T46quvnFtvvdUsR69D8NNPP/kdD9cfUnrMU0+R0VOdfI+hu7FO7dq1S/d75OmbEKrraeYVvv/Xus3jNogAAFgUkceIAQBwC4IYAACLCGIAACwiiAEAsIggBgDAIoIYAACLCGIAACwiiAEAsIggBgDAIoIYAACLCGIAACwiiAEAEHv+D7ZT/fG7oxIfAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "while True:\n", " result = random.choice(results)\n", " if result.converged:\n", " break\n", "\n", "# Randomly select a parameter and plot its posterior distribution\n", "param = random.choice(result.variables)\n", "fig, ax = plt.subplots(figsize=(5.5, 4))\n", "ax.hist(result.samples[param])\n", "ax.set_title(f\"posterior distribution of {param}\")\n", "\n", "# Let's list InferenceResult attributes/methods\n", "print(\n", " \"List of InferenceResult attributes/methods:\\n >>\",\n", " \"\\n >> \".join(attr for attr in dir(result) if not attr.startswith(\"_\")),\n", ")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This was just a quick overview, but you can do all sorts of analyses with the results, e.g., plotting the evolution of posterior distributions as a function of cycle number in form of violin plots, etc." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Single circuit, single dataset (SCSD)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We've already covered how to use `perform_bayesian_inference` for SCMD in the previous section. For SCSD, you just need to pass a single impedance dataset to the function, i.e., a NumPy array instead of a list of arrays. The rest of the process is the same!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Multiple circuits, single dataset (MCSD)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Similarly, you can use `perform_bayesian_inference` for MCSD by passing a list of circuit strings instead of a single string. Alternatively, you can pass a dataframe, but it needs to be formatted with columns named `circuitstring`, and `Parameters` with the circuit strings and initial guesses for the parameters, respectively. This unusual format is for legacy reasons and might be changed in the future." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Multiple circuits, multiple datasets (MCMD)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "You might ask, what about MCMD? Well, we can easily extend the API to support this mode of analysis, but we couldn't find an actual use case for it, so it's not implemented to keep the codebase sane! If you really need this feature, you can easily implement it yourself by calling `perform_bayesian_inference` in a loop over the datasets!" ] } ], "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.18" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "06ec6b0c2e944b8b87835e6304b4431f": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%" } }, "099f38a89dbd4e64aead3366948ddc3b": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "184843ba49654bf397db5973262156ab": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b84f192f6210453eb3dbdbebf083ddf0", "placeholder": "​", "style": "IPY_MODEL_210bf95aa2354d479985c7535697fd96", "tabbable": null, "tooltip": null, "value": " 130/130 [01:32<00:00,  1.77it/s]" } }, "20779d7400b14bae880f4985347e3728": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "20a74cceb62147689d24f34dcbf44122": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "210bf95aa2354d479985c7535697fd96": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "26026bd827bd44918f147994d88669c6": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "2b515de3b25c4444aeae33d81b6e4603": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b30d4e580e7d463b8e9da96d8de4c94a", "placeholder": "​", "style": "IPY_MODEL_26026bd827bd44918f147994d88669c6", "tabbable": null, "tooltip": null, "value": " 130/130 [09:47<00:00,  3.36s/it]" } }, "301ceedfa2f54a9aace9646bb3649309": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_6988fbcb9b1b4cdeb05db805c2c36705", "IPY_MODEL_4c8a882c8ddd4de3bf40ba64acff8563", "IPY_MODEL_2b515de3b25c4444aeae33d81b6e4603" ], "layout": "IPY_MODEL_8ecd5ff2252343b1a4e30a1eb3ffe84c", "tabbable": null, "tooltip": null } }, "310ade8ec3934d0c87ac0091029214b8": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "314a2a6ccc6347ad9e322aa5baf30322": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "319bbbc6cc064b8abdde336688a448b2": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "41f76e09a828474fb72229f99eba4e8e": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_f99d8b27f646457c9a7410ef3a7222cc", "IPY_MODEL_c4723768136e4cfd82e1fa03707e34ae", "IPY_MODEL_b5d2179d2d2541feb29daabdac7395da" ], "layout": "IPY_MODEL_df653086f74e4fb088215d66e109d8fe", "tabbable": null, "tooltip": null } }, "423259f44375468aa28f118c0ebe1946": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": "2", "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4323cbbe14064374bd9c3bfc6c4014ac": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "4c8a882c8ddd4de3bf40ba64acff8563": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_423259f44375468aa28f118c0ebe1946", "max": 130.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_4323cbbe14064374bd9c3bfc6c4014ac", "tabbable": null, "tooltip": null, "value": 130.0 } }, "6939359dd7994f7cbade2c2fa9326266": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": "2", "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "6988fbcb9b1b4cdeb05db805c2c36705": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_8be4c5677a7244f4b8fc0fa76691a311", "placeholder": "​", "style": "IPY_MODEL_319bbbc6cc064b8abdde336688a448b2", "tabbable": null, "tooltip": null, "value": "Performing Bayesian Inference: 100%" } }, "7d9b7a99566c402299630558fd4bf436": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_099f38a89dbd4e64aead3366948ddc3b", "placeholder": "​", "style": "IPY_MODEL_e9a1d6a8f242471a93e3f666cd47148b", "tabbable": null, "tooltip": null, "value": "Performing Bayesian Inference:   0%" } }, "7db8069bb81f4ec098244dfbe3f83b88": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "8be4c5677a7244f4b8fc0fa76691a311": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "8ecd5ff2252343b1a4e30a1eb3ffe84c": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%" } }, "92f90a3a203a4d62973c14d1e931d602": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": "2", "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "97ceb856254b43e8ae250718f4e1b6e7": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "danger", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_bf8d228b4bd34b47beea6a52a1eb33af", "max": 130.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_314a2a6ccc6347ad9e322aa5baf30322", "tabbable": null, "tooltip": null, "value": 0.0 } }, "a2c016e5324f43abb9a2572680108b01": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b0348bbf6fec45a0a6075b469cd4ff3d": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "b30d4e580e7d463b8e9da96d8de4c94a": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b5b1e5d0e6ab4ec09d50c7ab8bbd5904": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "b5d2179d2d2541feb29daabdac7395da": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_b5b1e5d0e6ab4ec09d50c7ab8bbd5904", "placeholder": "​", "style": "IPY_MODEL_20a74cceb62147689d24f34dcbf44122", "tabbable": null, "tooltip": null, "value": " 0/130 [01:34<?, ?it/s]" } }, "b61481dfe7a5444ebcdacec2df15a2e9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "b84f192f6210453eb3dbdbebf083ddf0": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "bf8d228b4bd34b47beea6a52a1eb33af": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": "2", "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "c08e47ea53ed4a668194a706bef6363b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_d5a7500b13a04935b2fcadf3b8faabc9", "IPY_MODEL_e83696d76852469091d6e2d1708cb567", "IPY_MODEL_184843ba49654bf397db5973262156ab" ], "layout": "IPY_MODEL_e071d7407d1d4a8faa5253130bafab70", "tabbable": null, "tooltip": null } }, "c4723768136e4cfd82e1fa03707e34ae": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "danger", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_92f90a3a203a4d62973c14d1e931d602", "max": 130.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_310ade8ec3934d0c87ac0091029214b8", "tabbable": null, "tooltip": null, "value": 0.0 } }, "cf56ba66fcd74402a35c070b53c60fc5": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_7db8069bb81f4ec098244dfbe3f83b88", "placeholder": "​", "style": "IPY_MODEL_b61481dfe7a5444ebcdacec2df15a2e9", "tabbable": null, "tooltip": null, "value": " 0/130 [00:36<?, ?it/s]" } }, "d5a7500b13a04935b2fcadf3b8faabc9": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_dd3348f72dde48b684e0ede7eae3cab1", "placeholder": "​", "style": "IPY_MODEL_b0348bbf6fec45a0a6075b469cd4ff3d", "tabbable": null, "tooltip": null, "value": "Refining Initial Guess: 100%" } }, "d8e5aeece824486f892f273e15432456": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_7d9b7a99566c402299630558fd4bf436", "IPY_MODEL_97ceb856254b43e8ae250718f4e1b6e7", "IPY_MODEL_cf56ba66fcd74402a35c070b53c60fc5" ], "layout": "IPY_MODEL_06ec6b0c2e944b8b87835e6304b4431f", "tabbable": null, "tooltip": null } }, "dd3348f72dde48b684e0ede7eae3cab1": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "df653086f74e4fb088215d66e109d8fe": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%" } }, "e071d7407d1d4a8faa5253130bafab70": { "model_module": "@jupyter-widgets/base", "model_module_version": "2.0.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "2.0.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border_bottom": null, "border_left": null, "border_right": null, "border_top": null, "bottom": null, "display": "inline-flex", "flex": null, "flex_flow": "row wrap", "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "padding": null, "right": null, "top": null, "visibility": null, "width": "100%" } }, "e1f816d87217497992bd8ad59c831623": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "ProgressStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "e83696d76852469091d6e2d1708cb567": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_6939359dd7994f7cbade2c2fa9326266", "max": 130.0, "min": 0.0, "orientation": "horizontal", "style": "IPY_MODEL_e1f816d87217497992bd8ad59c831623", "tabbable": null, "tooltip": null, "value": 130.0 } }, "e9a1d6a8f242471a93e3f666cd47148b": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "2.0.0", "_view_name": "StyleView", "background": null, "description_width": "", "font_size": null, "text_color": null } }, "f99d8b27f646457c9a7410ef3a7222cc": { "model_module": "@jupyter-widgets/controls", "model_module_version": "2.0.0", "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "2.0.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "2.0.0", "_view_name": "HTMLView", "description": "", "description_allow_html": false, "layout": "IPY_MODEL_a2c016e5324f43abb9a2572680108b01", "placeholder": "​", "style": "IPY_MODEL_20779d7400b14bae880f4985347e3728", "tabbable": null, "tooltip": null, "value": "Refining Initial Guess:   0%" } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 4 }